organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dhiran V. B. Walji, John M. D. Storey and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (C–C) = 0.002 Å R factor = 0.018 wR factor = 0.043 Data-to-parameter ratio = 15.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2007 International Union of Crystallography All rights reserved

5-Bromo-6-chloro-*N*⁴-methylpyrimidine-2,4-diamine

In the title compound, $C_5H_6BrClN_4$, intermolecular N-H···N hydrogen bonds link the molecules into tapes containing $R_2^2(8)$ loops. Received 21 March 2007 Accepted 9 April 2007

Comment

The substituted pyrimidine title compound, $C_5H_6BrClN_4$, (I) (Fig. 1), is a precursor in the synthesis of a derivative of the natural product heteromine H.

In (I), the pyrimidine ring (C1–C4/N1/N2; centroid denoted Cg) is almost planar (r.m.s. deviation from mean plane = 0.018 Å) and atom C5 is the only non-H atom to be displaced significantly from the mean plane [deviation = 0.349 (3) Å]. The bond angle sum of 358° at N4 implies sp^2 -hybridization for this atom, and the short C3–N4 bond length of 1.341 (2) Å indicates substantial double-bond character. The situation at N3 is ambiguous; the short C4–N3 bond of 1.358 (2) Å implies double-bond character, but the bond-angle sum of 346° and the mean bond angle of 115° are intermediate between typical sp^2 and sp^3 values. Otherwise, the geometrical parameters for (I) fall within expected ranges (Allen *et al.*, 1995).

The crystal packing of (I) is influenced by intermolecular $N-H \cdots N$ hydrogen bonds (Table 1). The two hydrogen bonds involving the NH₂ group assemble the molecules into tapes propagating along [001], with adjacent molecules linked by $R_2^2(8)$ loops (Bernstein *et al.*, 1995). There are two crystallographically distinct $R_2^2(8)$ loops, one generated by a centre of inversion and one generated by twofold rotation symmetry. The hydrogen-bonding situation for N4 is less clear cut. The N4/H3 group is involved in an intramolecular N-H···Br1 link, and also an intermolecular N-H···N interaction (Table 1). The pyrimidine rings form $\pi - \pi$ stacking interactions across centres of inversion $[Cg \cdots Cg^{vi} = 3.9189 (9) \text{ Å};$ symmetry code: (vi) $\frac{1}{2} - x$, $\frac{1}{2} - y$, -z], and a relatively short Br1···C5^{vii} contact of 3.3434 (18) Å is also present [symmetry code (vii): $x - \frac{1}{2}, \frac{1}{2} - y, z - \frac{1}{2}$, compared with 3.55 Å for the sum of the van der Waals radii of Br and C (Bondi, 1964).

Br1^v

Experimental

4,6-Dichloro-5-bromopyrimidine (0.500 g, 2.06 mmol) was added to a flask under argon. This was followed by slow addition of methylamine in 33% ethanol/water (10 ml) and the solution was left to stir overnight for 12 h. The excess methylamine was removed *in vacuo* and flash column chromatography (hexane/ethyl acetate/triethylamine v/v/v 10:5:1) yielded crude (I) as a yellow solid with $R_{\rm f} = 0.39$. Recrystallization from ethanol/acetone (v/v 1:1) with a few drops of water afforded 0.363 g (72% yield) of colourless blocks of (I), m.p. 447–449 K; $v_{\rm max}$ (KBr) 3455, 3299 (NH₂), 1631 (NH₂), 1549 (C=N, conjugated, cyclic), 1449 (CH₃), 1059 (pyrimidyl Br).

Crystal data

 $\begin{array}{l} C_{5}H_{6}BrClN_{4}\\ M_{r}=237.50\\ Monoclinic, C2/c\\ a=9.6480\ (2)\ \text{\AA}\\ b=10.8032\ (3)\ \text{\AA}\\ c=15.1157\ (3)\ \text{\AA}\\ \beta=105.2600\ (14)^{\circ} \end{array}$

 $V = 1519.95 (6) Å^{3}$ Z = 8 Mo K\alpha radiation \(\mu = 5.69 \text{ mm}^{-1}\) T = 120 (2) K 0.40 \times 0.18 \times 0.14 \text{ mm}\)

15792 measured reflections

 $R_{\rm int} = 0.034$

refinement

 $\Delta \rho_{\text{max}} = 0.49 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

1761 independent reflections

1645 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2003) $T_{min} = 0.209, T_{max} = 0.503$ (expected range = 0.187–0.451)

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.018$ $wR(F^2) = 0.043$ S = 1.081761 reflections 111 parameters

Table I			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N3-H1\cdots N1^{i}$	0.81 (2)	2.43 (2)	3.232 (2)	173.4 (19)
$N3-H2\cdots N2^{ii}$	0.87(2)	2.21(2)	3.084 (2)	178.5 (19)
N4-H3···N3 ⁱⁱⁱ	0.78 (2)	2.65 (2)	3.252 (2)	135 (2)
$N4-H3\cdots Br1$	0.78 (2)	2.66 (2)	3.0851 (15)	115.8 (19)

Symmetry codes: (i) -x + 1, y, $-z + \frac{1}{2}$; (ii) -x + 1, -y + 1, -z; (iii) $x - \frac{1}{2}$, $y - \frac{1}{2}$, z.

The N-bound H atoms were located in a difference Fourier map and their positions were refined freely with $U_{iso}(H) = 1.2U_{eq}(N)$. The methyl H atoms were placed in calculated positions (C-H = 0.98 Å) and refined as riding with the methyl group allowed to rotate about its local threefold axis, with $U_{iso}(H) = 1.5U_{eq}(C)$.

Data collection: *COLLECT* (Nonius, 1998); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

Fragment of a [001] tape in (I). Hydrogen bonds are indicated as doubledashed lines and methyl H atoms have been omitted. [Symmetry codes: (i) and (ii) as in Table 1; (iv) x, 1 - y, $z + \frac{1}{2}$; (v) x, 1 - y, $z - \frac{1}{2}$.]

We thank the EPSRC UK National Crystallography Service (University of Southampton) for the data collection.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). *International Tables for Crystallography*, Vol. C, Section 9.5, pp. 685–706. Dordrecht: Kluwer.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Figure 1

Br1^{iv}

The molecular structure of (I) showing 50% displacement ellipsoids (arbitrary spheres for the H atoms). The $N-H\cdots$ Br interaction is shown with double-dashed lines.

N2

N2ⁱ